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Abstract

Three-dimensional sidewall-compression scramjet

inlets with leading-edge sweeps of 30 ° and 70 ° have

been tested in the Langley Hypersonic CF4 Tunnel
at Mach 6 with a ratio of specific heats of 1.2. The

parametric effects of leading-edge sweep, cowl posi-

tion, contraction ratio, and Reynolds number were

investigated. The models were instrumented with

42 static pressure orifices that were distributed on

the sidewalls, baseplate, and cowl. Schlieren movies
were made of selected tunnel runs for flow visualiza-

tion of the entrance plane and cowl region. Although

these movies could not show the internal flow, the

effect of the internal flow spillage on the external
flow was evident. To obtain an approximate char-

acterization of the flow field, a modification to two-

dimensional, inviscid, oblique shock theory was de-
rived to accommodate the three-dimensional effects

of leading-edge sweep. This theory qualitatively pre-

dicted the reflected shock structure (i.e., sidewall im-

pingement locations) and the observed increase in
spillage with increasing leading-edge sweep. The pri-

mary effect of moving the cowl forward was capturing
the flow that would have otherwise spilled ahead of

the cowl. Increasing the contraction ratio (moving

the sidewalls closer together) increases the number
of internal shock reflections and hcnce incrementally

increases the sidewall pressure distribution. Signifi-

cant Reynolds number effects were noted over a small

range of Reynolds number.

Introduction

The requirement for supersonic combustion ram-

jets for high Mach number propulsion of airbrcath-

ing vehicles such as the National Aero-Space Plane

(X-30) has bcen recognized (refs. 1 and 2). Such
propulsion systems are highly integrated with the
airframe to exploit the compression effected by the

forebody bow shock. (The advantages of propulsion-
airframe integration have been well recognized for

many years. See ref. 3.) The precompression of
the flow in the vertical direction upstream of the

engine inlet is demonstrated in figure 1. It is an-

ticipated that the boundary layer at the inlet en-

trance on a full-scale hypersonic vehicle would be

large with respect to the inlet height. (Computa-
tional results have been presented in ref. 4 for inflow

boundary layers as large as 20 percent of the inlet

height.) As a result, further turning in the vertical
direction, as in two-dimensional inlets, would greatly

increase the probability of large-scale separation re-

gions at the entrance of the inlet as a result of the
shock boundary-layer interaction. It is important to
note that the scale and nature of these interactions

depend strongly upon whether the boundary layer is
laminar, transitional, or turbulent; the inflow bound-

ary layer for this series of tests is laminar.

The sidewall compression inlet (fig. 2) represents

a three-dimensional configuration wherein internal
flow compression is accomplished in the horizontal

direction by wedge-shaped sidewalls that reduce the

total vertical turning that the flow must encounter to

obtain the desired pressure rise. The leading edges
of these sidewalls are swept to reduce aerothermal

loads, hence cooling requirements on the leading

edge, and to increase inlet flow spillage, which aids in
starting the fixed geometry inlet at the lower Mach

numbers. The aft sweep has the effect of turning

the flow away from the forebody plane (spilling out

ahead of the cowl); as the Mach number is increased,
the sidewall shock angles become smaller, which

effectively reduces the spillage window and increases

the mass capture (ref. 5).

Three-dimensional sidewall-compression scramjet

inlet models with leading-edge sweep angles of 30 °

and 70 ° have been tested in the Langley Hypersonic

CF4 Tunnel at Mach 6 with a frec-stream ratio of

specific heats of 1.2. The models were instrumented
with static pressure orifices distributed on thc side-

walls, baseplate, and cowl to quantify the effects of

cowl position, contraction ratio, and Reynolds num-
ber. Schlieren movies were made of selected runs for

flow visualization.

This report identifies inlet characteristics in

tetrafluoromethane (CF4) as a first step toward ob-

taining a characterization of simulated real-gas ef-
fects on inlet flow fields. Traditionally, CF4 has been

used for blunt-body research (refs. 6-8) to simulate
the decrease in the ratio of specific heats 7 that oc-

curs within a dissociating shock layer surrounding a

vehicle that is reentering the atmosphere. The direct
effect of a decreased _/is an increase in the normal-

shock density ratio, which has been shown to be a

primary factor in determining the inviscid character-

istics of the hypersonic flow surrounding a reentering
vehicle. Midden and Miller (ref. 9) point out that

for relatively slender bodies and lifting bodies, the

simulation of low V effects is approximate because

of the variation of 7 within the shock layer along or

around a reentering vehicle, which is in contrast to
the nearly constant 7 within the shock layer in CF4.

In spite of this effect, they note the importance of

such tests in providing a lower bound for the assess-
ment of "_ effects, which cannot be obtained in other

ground test facilities. To obtain the explicit effects of

low V, the model must be tested in both CF4 and air.

This report is a first step toward that end. Further,

these tests may be considered exploratory, because



thesemodelswerethe largesttestedto datein the
CF4facility. It wasthereforenot knownif the tun-
nelcouldremainstartedoncethemodelwasinjected
into theflow. Finally,althoughtheinstrumentation
densityin thesetestswasinsufficientfor atrue com-
putational fluid dynamics (CFD) validation, this test

in CF4 provides a set of data that may be used to

compare with CFD calculations for a virial gas. The

complete data set (which included descriptions of the

models, facility, and testing methods, the test matrix
and run log, and numerous data tables, line plots,

and schlieren photographs) was released for reference

without analysis in reference 10. The present work

presents a subset of those data to provide a concise

analysis and discussion.

Symbols

Values are given in U.S. Customary Units, but
they are occasionally given in SI Units or in both

units where they are considered useful.

CR contraction ratio, W/g

g throat gap, in.

H height of inlet, 2.75 in.

h enthalpy, J/kg (Btu/lbm)

M Mach number

Mln component of free-stream Mazh
number normal to leading edge

(sec fig. 21)

Mlp component of free-stream Mach
number parallel to leading edge

(see fig. 21)

l_12n postshock component of Mach

vector normal to leading edge in

plane of wedge (see fig. 21)

M2p postshock component of Mach
vector parallel to leading edge in
plane of wedge (see fig. 21)

Npr Prandtl number

NRe Reynolds number

p pressure, Pa (psia)

q dynamic pressure

T temperature, K (°R)

TxI distance from sidewall leading edge
to throat, 5.04 in.

u velocity, m/sec (ft/sec)

W

X

X !

Y

Z

Z

_3, F

7

_Tke

Oeff

A

#

P

Subscripts:

t

1

2

inlet width at sidewall leading edge,
in.

axial distance measured from

bascplate leading edge (see fig. 4),
in.

local axial distance measured from

sidewall leading edge (see fig. 4), in.

vertical distance from bottom

surface (see fig. 4), in.

compressibility factor

lateral distance from inlet plane of

symmetry (see fig. 4), in.

angles measured in plane of wedge

(see fig. 21), deg

ratio of specific heats

sidewall-compression angle, deg

effective sidewall-compression angle,
measured normal to sidewall leading

edge, deg

spillage angle (see fig. 21), deg

kinetic energy efficiency

effective oblique shock angle,

measured normal to sidewall leading

edge, deg

leading-edge sweep angle, deg

viscosity, N-sec/in 2 (lbm/ft-sec)

density, kg/m 3 (lbm/ft 3)

total conditions

wind-tunnel free-stream conditions

postshock conditions

Experimental Methods

Model Description

Photographs of the inlet models are shown in fig-

ure 3, and sketches are presented in figure 4. Sidewall

leading-edge sweeps of 30 ° and 70 ° were selected to
represent both moderately and highly swept models.

The generic, three-dimensional sidewall-compression
inlets used in the present report have bccn under

study for several years. A review of the development
of scram jet research at Langley Research Center is

presented in reference 11; much of the inlet work de-

voted to that effort was reported in references 12 16.
As a result of a trade study (ref. 14), the sidewall-

compression angle was fixed at 6 °. This angle was a



compromisebetweenlargercompressionangles(lead-
ingto strongerinternalshockswith increasedproba-
bility ofboundary-layerseparation)andsmallercom-
pressionangles(lcadingto weakerinternalshocksbut
requiringthe inlet to be longerto obtainthe same
compression,and thus imposinga sizeand weight
penaltyon theinlet). Themodelswere2.75in. tall
andweremachinedof aluminum;the sidewallshad
leading-edgediametersof0.010in.,andthebaseplate
andcowleachhadleading-edgediametersof0.015in.
with 10° of externalcompression.Themodelswere
injectedinto the tunnelin an invertedorientation,
with the cowlon top. Thevehicleforebodyplane
wasrepresentedby a flat plateandwill be referred
to asthe baseplate. The model was uncooled. Be-

cause the forebody boundary layer was not modeled,

the configuration was said to be uninstalled.

The 30 ° sidewall model was originally designed

for a parametric study of inlet starting performance

(ref. 15) and was instrumented only to the extent
necessary to determine if unstart had occurred. A

number of pressure taps were added to the 30 ° model,

a 70 ° leading-edge sweep model was fabricated, and
both were tested in the Langley 22-Inch Mach 20

Helium Tunnel (ref. 16). Because these models were
adapted from previous test programs, thc number
and location of the instrumentation were not optimal.

Static pressure orifices (with 0.040-in. inside diame-

ters) were arranged in single arrays located along the
centerlines of the basepIate, sidewall, and cowl, and

also on the sidewall at y/H = 0.13 (near the base-

plate) and y/H -- 0.87 (near the cowl), as shown in

figure 4.

The contraction ratio is defined as the ratio of the

inlet entrance area to the throat area. Because the

present configuration is characterized by a constant

height, the contraction ratio reduces to the ratio
of the inlet entrance width W to the throat gap

g. (See fig. 4.) This ratio can be varied between

the runs by laterally moving the sidewalls. The

cowl position can also be changed between runs.
For the present study, the cowl was placed at the

throat (referred to as O-percent cowl) and forward

of the throat 25 percent of the distance between
the throat and the sidewall leading edge (referred to

as 25-percent cowl). The axial distance down the
sidewalls x _ is nondimensionalized by the distance

between the sidewall leading edge and the throat

entrance T_ for comparison of pressurc distributions
for configurations with different leading-edge sweeps

(i.e., the equation xl/TIx = 0.30 represents an axial
location 30 percent of the throat length downstream

of the sidewall leading edge, regardless of the leading-

edge sweep).

Facility Description

Since thesc tests were made, the Langley Hyper-

sonic CF4 Tunnel has undergone major upgrades. A

description of the upgraded facility is presented in

reference 17, and a detailed description of the facil-

ity as it existed at the time of these tests is presented
in reference 9. The important features of the original

tunnel that pertain to these tests are noted herein.

Figure 5 is a schematic of the original tunnel; this

schematic shows the major components. The high-

pressure supply system consisted of a CF4 storage
trailer rated for 2500 psia, a compressor capable of

5000 psia, a 5000-psia bottle field with a storage vol-

ume of 120 ft 3, and an externally loaded dome pres-

sure regulator to control the operating pressure of
the tunnel. After compression, the gas was heated

to a maximum temperature of 1500°R as it flowed

through 44 spirally wound stainless steel tubes im-

mersed in two parallel lead-bath heaters. Particles

larger than 10 #m were removed from the flow by an
in-line filter located between the heater and the set-

tling chamber. The flow was then expanded through

a contoured, axisymmetric nozzle with a 0.446-in-
diameter throat, that was designed to create Mach 6

flow at the nozzle exit (approximately 20 in. in di-

ameter). The flow exhausted into an open-jet test
section approximately 6 ft in length and 5 ft in di-

ameter, was collected by a diffuser, and was then

cooled by a water-cooled heat exchanger before be-
ing dumped into vacuum spheres. The spheres had a
combined total volume of 72 000 ft 3. These spheres

were then evacuated into a reclaimer system.

Prior to a run, the test section, nozzle, settling

chamber, and vacuum spheres were evacuated to

approximately 0.01 psia. The dome loader was set to
the desired reservoir pressure, and the heaters wcre

set to the desired flow temperature. An automated

sequencer opened and closed appropriate valves and

controlled the injection and retraction of the model.
Although run times up to 30 sec are possible, a run

time of 15 sec was adequate for these tests.

Instrumentation

The settling chamber (reservoir) pressure Pt,1 was
measured with strain-gage pressure transducers that

have full-scale ratings of either 3000 or 300 psia,

depending on the operating condition of the tun-
nel. The settling chamber (reservoir) temperature

Tt,1 was measured with two chromel-alumel thermo-
couples inserted through the wall of the settling
chamber and positioned near the center of the cham-

ber. The pitot pressure of the flow in the test section

Pt,2 was measured by a flat-faced cylindrical probe
that was mounted in the test section and linked to an
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electronicallyscannedpressure(ESP)siliconsensor
module.A secondESPmodulewasusedto measure
the surfacepressureson the model. Each2.5-psid
ESPmodulecontained32sensorsandwaslocated
at thebaseof the modelstrut to minimizethetub-
inglengthbetweenthepressureorificesonthemodel
andthemodule.ThepressuretubingandESPmod-
uleswereinsulatedto preventthermalshift of the
ESPcalibration.An in situ calibration consisted of

applying three known pressures (vacuum levels) that

were chosen to span the range of the expected mea-

sured pressures. A sample rate of 20 samples per
second was obtained for the 64 channels.

Schlieren movies were made for flow visualization

in the region of the entrance plane and cowl, and they
were recorded on 16-am video news film. The movies

were shot at 128 frames/second; therefore, the flow
could be observed on an 8-msec time scale.

Test Conditions

Tests were performed at a nominal Mach num-
ber of 6 for reservoir pressures of 300, 1000, and

2000 psia at a reservoir temperature of 1200°R.

The test matrices for the two models are given in
tables 1 and 2. Free-stream and postnormal-shock

flow properties wcrc calculated as outlined in ref-
erence 9. The nominal free-stream Reynolds num-
bers obtained under these conditions were 0.89 x l05,

2.89 x 105, and 5.50 x 105 per foot, respectively. Free-

stream static pressures were quite low: 0.01 psia,

0.03 psia, and 0.05 psia, respectively. The free-

stream ratio of specific heats was 1.2. Tables of free-

stream and postnormal-shock flow properties are pro-
vidcd for the three Reynolds numbers in tables 3-5.

A list of tunnel runs correlating the test conditions,

model configurations, and run numbers is given in
table 6.

Pitot-rake surveys of the flow in the test section
were performed previously for reservoir pressures

from 100 to 400 psia and 1000 to 2500 psia (ref. 9).

Each of the surveys showed a uniform core but with
a centerline disturbance. At the lower reservoir

pressures, a second disturbance was located at a
radius of 4 in. from the centerline. Because the model

was only 2.75 in. tall, it was injected 1 in. above the

centerline, so that injestion of either disturbance was
avoided. The diameter of the core varied weakly with

reservoir pressure from 14 in. at 300 psia to 15 in. at

2000 psia. In each case, the model was completely
immersed in the core, free from tunnel boundary-

layer interference.

Data Reduction and Uncertainty

Measured values of Pt,1 and Tt,1 are believed to

be accurate to within 2 percent (ref. 9). Values of

P/PI are estimated to be accurate to within 4 per-
cent, based on manufacturer specifications for the

given pressure levels. Run-to-run repeatability was

examined for two configurations. The mean absolute
deviation of the set of measured pressures for both

config_lrations was less than 4 percent; hence, it was

less than the uncertainty of the measurement.

Test Medium

In 1969, Jones and Hunt (ref. 6) pointed out

that the purpose of the CF4 Tunnel was to pro-
vide a conventional wind tunnel that could simulate

the increased normal-shock density ratios (from 10
to 20) and the decreased ratio of specific heats (as low

as 1.1) encountered in hypervelocity flight because

of the chemical dissociation of the postshock flow.

In 1981, Sutton (ref. 18) indicated that conventional
air or nitrogen tunnels were limited to 7 -- 1.4 and

a density ratio of approximately 6 and that helium
tunnels are limited to "y ---- 1.67 and a normal-shock

density ratio of 4; however, they showed that the CF4

Tunnel provides a normal-shock density ratio of 12

with "y < 1.4. The thermodynamic and transport
properties of CF4 may bc found in references 19

21, and relations are presented in a form amenable

to flow-field computer codes in reference 18. Al-
though the relations must generally account for inter-

molecular force effects and high-temperature effects,

in the test section the gas has been expanded to such
a low pressure that intermolecular force effects and

high-temperature effects are negligible in both the
free stream and behind a normal shock. For these

tests, therefore, CF4 can be treated as thermally

perfect (Z = 1) and calorically imperfect, with the
specific heats given as functions of temperature only

(ref. 18).

Results and Discussion

As previously noted, a preliminary data release

for these tests is presented in reference 10. Tabu-
lar pressure data for each run were provided along

with numerous plots that cross-plotted the effects of

leading-edge sweep, cowl position, contraction ratio,

and Reynolds number for every set of configurations

for which cross-plotting was possible. The present re-
port presents a typical subset of those data to provide

a concise analysis and discussion. A discussion of the

shock structure predicted by an inviscid approximate

analysis is presented first to serve as a framework for

the analysis of the experimental data.



Inviscid Analysis

When the flow encounters the wedge-shaped side-

walls, a complex shock structure develops. Consider

first the inviscid flow past a pair of infinitely tall,

unswept (two-dimensional) wedges located opposite

one another (i.e., an unswept inlet of infinite height,

fig. 6). A pair of shock sheets extend from the lead-
ing edge of the wedges, cross at the centerline, and

then impinge on the sidewalls. These shocks cancel

if they are incident at the shoulder in the throat;

otherwise, they continue to reflect if they strike up-
stream of the shoulder. Figure 6 illustrates the three

possibilities: shock aft of shoulder, shock on shoul-

der, and shock upstream of shoulder. This reflected

shock pattern has been demonstrated computation-

ally for viscous flow through a sidewall-compression
inlet of similar design in Mach 5 air (perfect gas)

for a leading-edge sweep of 45 ° (ref. 22). Although
the flow conditions were different, the prominent fea-

tures of the flow are expected to be similar to the

present configuration. From a geometric standpoint,
the addition of a leading-edge sweep to the sidewalls

causes the shock sheets that are generated by the

leading edge, the line along which the shocks inter-
sect on the centerline, and the line along which the

reflected shocks impinge on the sidewalls to bc swept

at the leading-edge sweep angle. In the absence of
three-dimensional end effects, shock interactions of

this nature occur along lines of constant leading-edge

sweep angle (provided the shock waves are attached).
This trend was also demonstrated computationally

(see, e.g., figs. 5 and 6 of ref. 22). Hence, figure 6
illustrates the approximate, inviscid model for cross

sections of both swept and unswept inlets.

The internal shock pattern is largely dictated

by the sidewall-compression angle 5, the inflow
Mach number -_I1, and the contraction ratio CR.

The sidewall-compression angle and the inflow Mach

number determine the inviscid shock angle through

oblique shock theory. The addition of leading-edge

sweep alters the application of the theory as given in

the appendix. For a fixed sidewall-compression angle
and Mach number (and hence fixed shock angles),

the location of the shock impingement point is de-

termined by the contraction ratio (distance between

the sidewalls). Thus, increasing the contraction ra-

tio (bringing the sidewalls closer together) increases
the compression of the inlet by causing the inter-

nal flow to encounter a greater number of reflected

oblique shocks. Results from the computation of the
internal reflected oblique shocks inside the 30 ° and

70 ° leading-edge sweep models via the equations pre-

sented in the appendix are given in table 7. A scale
drawing of the shock structure for the A = 30 ° config-

uration for CR = 3, 5, and 9 is presented in figure 7.
All three contraction ratios can be superimposed on

the same figure, because an increase in contraction
ratio yields a decrease in the distance between the

sidewall and the centerline; hence, three centerlines

are drawn. The change in contraction ratio does

not affect the shock angles, but does affect the dis-
tance the shocks travel to interact at the center-
line. Table 7 also shows that the shocks in the 70 °

model detach upstream of the throat. The equations
presented in the appendix show that the A = 70 ° con-

figuration has a significantly larger effective sidewall-

compression angle 5eft than the 30 ° model. The com-

bination of increased 6eft and decreased Mln (ref. 5)
for the same inflow Mach number causes the compo-
nent of the Mach vector normal to the reflected shock

sheet to fall below 1.0 after fewer shocks for A = 70 °

than for A = 30 °. This fall results in the detached

shock reflection.

Sweeping the leading edges aft has an additional

effect of turning the flow away from the baseplate
toward the cowl as the flow passes through the

swept shocks. This flow deflection is shown three-
dimensionally behind the first shock in figure 8.

(The flow deflection behind subsequent shocks is not

shown.) The appendix presents equations to com-

pute the inviscid flow deflection (spillage) angle (
between two infinitely long swept wedges (i.e., ne-

glecting end effects) with this modified oblique shock

theory. The spillage angle is on the order of a few de-

grees and is increased incrementally by each reflected

shock (i.e., ( for region 3 of fig. 6 is greater than
for region 2). The complexity of computing spillage

angles behind subsequent shocks is illustrated in the

figures for appendix A of reference 14.

Upstream of the cowl leading edge, the flow that
is deflected away from the baseplate spills from the

inlet. This spillage is important in helping the inlet
start at lower Mach numbers. As the Mach number is

increased, the area (in the plane of the cowl) behind
the shock sheets is decreased, because the shocks lie

closer to the sidewalls (fig. 9). The smaller shock

angles effectively reduce that spillage window and
increases the mass capture of the inlet, so that the

inlet is more efficient at high Mach numbers. It
has also been demonstrated inviscidly (ref. 5) that

as the Mach number is increased, the deflection of
the flow toward the cowl is decreased, which also

serves to improve the mass capture at higher Mach
numbers. It is these characteristics that make it

possible to consider a fixed-geometry inlet for use
over a wide Mach number range. Compared with

an aft placement, the cowl forward configuration

captures more of the mass that would have otherwise
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spilled. It is expectedthat a shockwill developon
thecowlleadingedgeinsidetheinletasthedeflected
flowimpingesonthecowlandis turnedbackparallel
to thecowlsurface.

Forinletsof finiteheight,endeffectscanplaya
largerole in determiningthe internalflow charac-
teristicsof the inlet. Whentheinlet heightis small
comparedwiththewidth,thepresentmodificationto
obliqueshocktheorydoesnotadequatelyaccountfor
thebehaviorof theflow.Upstreamof thecowllead-
ingedge,spillagetendsto causeapressurereliefnear
thecowlplaneandyieldslowerpressuresthanwould
beexpectedby the modifiedobliqueshocktheory.
Theexistenceof acenteredexpansionthat originates
fromthe interfaceof the shocksheetandbaseplate
(fig. 10)washypothesizedin reference23. Thehy-
pothesizedcenteredexpansionwouldensurethat the
flowvectordownstreamof the shocksheetliesnot
onlyin theplaneof theflowturnedtowardthecowl
but alsoin theplaneof thebaseplate.Thecentered
expansionhypothesispermitsthe flowvectorto be
positionedinbothplanesandpredictspressuresnear
the baseplateto be lowerthan in the centerof the
inlet,whereendeffectsareof lesserimportance.Al-
thoughthis theoryprovidesan interestinginviscid
modelof the flow,it fails to capturethe truecom-
plexityof thecornerflowinteractionsandtheeffects
of theinducedcrossflowat thesymmetryplane.The
instrumentationdensityin the presentset of mod-
elsis insufficientto adequatelyaddressthesetopics
in the presentpaper,exceptasdeviationsfromthe
inviscidresultsfor infinitelytall sweptwedges.How-
ever,cornerflowinteractionshavebeenaddressedin
reference24,a double-fininteractionhasbeenpre-
sentedat Mach4 in reference25,andexperimental
and computationalresultsof the inducedcrossflow
interactionsin an inlet at Mach10havebeenpre-
sentedin reference26.

SchlierenMovies

Schlierenmoviesof theentranceplaneandcowl
regionshowedthat the flow was steadyon an
8-msectimescale.Whencombinedwith thepressure
measurements,thesemoviesindicatedthat the inlet
startedfor eachconfigurationtestedandremained
startedfor thedurationof thetest. Althoughthese
moviescouldnot detail the internalflow features,
theeffectsof theinternalflowontheexternalflowin
termsof spillagewereevident.

Themodifiedobliqueshocktheorypresentedin
the appendixpredictsthat the spillageanglein-
creaseswith leading-edgesweepangle.(Secref. 5.)
Thus, the spillageis expectedto be greaterfor
A -- 70° than for A = 30 ° . Figures l l(a) and (b)

are enlarged frames taken from the schlieren movies

for A = 30 ° and 70 ° , respectively, at CR = 5,
0-percent cowl, and NRe = 5.50 × l0 g per foot. The

view, which is a profile of the inlet, is shown in an in-

verted orientation (relative to flight) with the cowl on

top. A small quantity of silicone sealant was placed

on the external surface of the cowl to protect the
pressure tubing leading from the cowl. A bow shock

is visible as a result of the silicone sealant, but it

is located far enough downstream of the cowl lead-

ing edge that it does not appear to interfere with

the flow into the inlet. (In fig. ll(b), this feature is

out of the field of view.) The schlieren photographs
present an integrated view across the span of the in-

let. Two-dimensional features (i.e., features that are

constant across the width of the inlet), such as the
shocks on the underside of the baseplate, appear in

sharp detail. Because of the horizontal orientation

of the knife edge in the schlieren system, increases

in density (shocks) appear dark in the top half of

the frame. Interpretation of the schlieren image in
the region above the inlet is complicated by the fact

that the shock waves are skewed relative to the plane
of the schlieren. The model of the flow field based

on the inviscid analysis presented in figure 8, where

the flow deflected toward the cowl by the sidewall

leading-edge shocks in the first shock bay (region 2 of
fig. 6), is shown three-dimensionally, and the spillage

angle ¢ is identified. (Also, the flow deflection in

region 3, although greater than for region 2, is not
shown.) When the inlet is viewed in profile, only thc

underside of the internal shock sheet, which extends
beyond the cowl plane, is visible. This feature was
faint in the schlieren movie of the 30 ° model and did

not reproduce well in figure ll(a). Because of the

increased spillage with increased leading-edge sweep,
this feature is more distinct for the A --- 70 ° con-

figuration (fig. ll(b)). (The improved definition in

the schlieren photographs of the A = 70 ° configura-

tion was observed for all configurations; figs. l l(a)

and (b) present typical results.) The dark region
above the cowl plane in the schlieren photograph

appears to extend aft of the leading edge to approxi-

mately 37 percent of the distance to the throat. Mod-
ified oblique shock theory indicates that thc internal-

sidewall leading-edge shocks should reach the inlet

centerline (i.e., point B of fig. 8) at x'/T_ = 0.41

(41 percent of the distance to the throat). Thus, the
dark regions above the inlet likely result from the
internal shocks. Because there are more than one

shock bay upstream of the cowl leading edge, sub-

sequent dark regions in the schlieren photographs
are observed. Also, the position of the cowl had

little influence on the global external flow field. A

complete set of schlieren photographs is presented in

6



reference 10. However, significant degradation of

the image quality occurred in the conversion of the
16-mm video frame to a 4- by 5-in. negative of the

photographs in the report.

Pressure Data

A discussion of the pressure distributions on the

30 ° model are presented first. Plots that super-

impose the pressure distributions on all surfaces of

a given configuration are designated "configuration-

complete" plots and are discussed with respect to
the overall flow structure. The effect of the cowl po-

sition for a given contraction ratio is discussed next,
and the contraction-ratio effects for a typical cowl

position are then presented. A similar format is fol-
lowed for the 70 ° model. Finally, discussions of the

leading-edge sweep and Reynolds number effects are

presented.

30 ° model. Figures 12(a)-(c) are configuration-

complete plots for A = 30 ° with 0-percent cowl,

NRe = 5.50 x 105 per foot, and CR = 3, 5, and 9,

respectively. The centcrline sidewall pressure dis-

tribution in figure ll(a) reveals a sharp rise at

x'/T_ _ 0.85. The modified oblique shock theory
predicts the leading-edge shocks to cross at the cen-

terline and impinge on the sidewall at x'/T1x _ 0.91

for CR = 3. (See table 7.) There is a sharp dip in

the pressure as the flow expands around the shoulder
into the constant-area throat region (x'/T_ = 1.0);
then there is a rise as a result of the reflected shock

impingement. Aft of the throat exit, the model side-

walls diverge to reexpand the flow, and this expan-
sion is noted in the sidewall ccnterline pressure dis-

tribution. The pressure distribution on the sidewall

near the baseplate (y/H = 0.13) follows the same

trend but slightly below the centerline curve, which

agrees with the inviscid shock-expansion model of ref-
erence 23. Additionally, the sidewall at y/H = 0.87
benefits from a pressure relief as a result of the in-

let spillage and also falls slightly below the center-
line sidewall curve. Figure 11 (b) represents the same

configuration but with a contraction ratio of 5. The

sharp sidewall centcrline pressure rise has moved for-

ward to x'/T_ ._ 0.7, which indicates that the shock
impingement point has moved forward with the in-

creasing contraction ratio (decreasing throat gap).

Figure 6 demonstrates this impingement point move-
ment two-dimensionally. Tile modified oblique shock

theory predicts the impingement location to be at

x'/Trx = 0.76. While the higher contraction ratio
yields a higher internal pressure in tile inlet, the
same trend of compression-expansion-compression is

shown in the throat. However, the shock impinge-

ment locations have changed. Again, the pressures

at y/H = 0.13 and 0.87 are slightly lower than the
sidewall centerline pressure. This is likewise true of
the sidewall for a contraction ratio of 9 (fig. 12(c)).

Because of the increase in contraction ratio, a greater

number of internal shocks are encountered upstream

of the throat. Individual shock impingements are

not resolved in the sidewall pressure distributions,

but the pressure levels upstream of the throat are

higher than for CR = 3 or 5. The previously noted

dip in the sidewall centerline pressure distribution at

the beginning of the throat is not present; rather,

the pressure rises throughout the throat region. The

spatial resolution provided near the beginning of the
throat is insufficient to indicate whether or not an

expansion exists locally; however, if the expansion
pattern exists, its influence is more restricted by the

proximity of the repeated shock impingements. That

is, modified oblique shock theory predicts shock im-
pingements of the sidewall first at xl/T_ = 0.68

and then at x'/T_ = 0.93 and 1.03. Because the

displacement of the sidewall boundary layer tends
to move these impingements forward, it is possi-
ble that a shock-on-shoulder condition exists for this

configuration.

Figures 13(a) (e) compare the effect of the cowl

position on pressures measured on the baseplate, the
sidewall centerline, the sidewall at y/H = 0.87 and

y/H = 0.13, and the cowl at CR = 3, A = 30 °,
and NRe = 5.50 x 105 per foot. These plots are

typical of the data taken at each contraction ratio.

The plots reveal that the baseplate centerline, the
sidcwall at y/H = 0.13, and the sidewall eenterline

appear to be out of the domain of influence of tile
cowl. For the cases of no cowl and 0-percent cowl (aft

cowl position), the sidewall pressurcs at y/H = 0.87

(fig. 13(d)) steadily increase as a result of the shock
impingement and then decrease because of the local

expansion around tile shoulder at the throat. For
the forward (25 percent) cowl position, however, the
effects of the local expansion appear to bc dominated

by a pressure increase caused by the internal cowl

leading-edge shock. This pressure increase is evident
at each pressure orifice at the y/H = 0.87 station.
This shock occurs as the flow impacts the free-stream

aligned cowl at some angle of incidence and is turned

back parallel to the cowl. The cowl centerline data

(fig. 13(e)) demonstrates that the location of the
cowl with respect to the pockets of flow deflected
toward the cowl plane influences the pressure on the

cowl. With the cowl in the aft (0-percent) position,

much of the high-pressure fluid that would have been

captured by the 25-percent cowl configuration has

spilled ahead of the cowl, and there is a lower pressure
on the cowl than for the 25-percent position. The



pressurerelaxationin the throat regionpreviously
notedat thesidewallcenterlineis alsoevidentin the
cowldatafor its aft placement.

Theeffectsof contractionratio arepresentedfor
a 0-percentcowl,NRe = 5.50 × 105 per foot con-

figuration in figures 14(a)-(e) and represent trends

typical of the data recorded. These figures demon-
strate the effects of contraction ratio on the static

pressures on the baseplate, the sidewall centerline,

the sidewall at y/H --- 0.13 and y/H = 0.87, and

the cowl, respectively. Figure 14(a) reveals that the

effect of increasing contraction ratio (bringing the

sidewalls closer together) yields an overall increase
in the pressure distribution. The baseplate bound-

ary layer is observed from schlieren photographs to

generate a weak shock at the baseplate leading edge.
This boundary layer and its associated shock seem

to disperse the sharp pressure peaks (predicted by
the modified oblique shock theory), where the side-

wall shocks intersect at the centerline. Figure 14(b)
presents the contraction-ratio effects on the sidewall

ccnterline pressure distribution. The change in con-

traction ratio produces a change in the incident shock
location, which is predicted approximately by the

modified oblique shock theory. The change in shock

location also influences the total compression of the
inlet in that a more forward incidence location allows

more shock reflections between the leading edge and

the throat, each of which incrementally increases the

static pressure in the inlet. Again, at the highest
contraction ratio, the local expansion at the shoul-
der in the throat is not resolved. The overall in-

crease in pressure with contraction ratio is also noted

on the sidewalls at y/H = 0.13 and at y/H = 0.87

(figs. 14(c) and (d)). The cowl pressures (fig. 14(e))
also demonstrate a strong dependence on contraction
ratio; this dependence varies by as much as a factor

of 4 over the range of contraction ratios tested.

70 ° model. Figures 15(a)-(c) are configuration-

complete plots for the 70 ° leading-edge sweep,
NRe = 5.5 × 105 per foot, 0-percent cowl configu-

ration at contraction ratios of 3, 5, and 9, respec-

tively. (Cowl pressures are not provided for the 70 °
configuration because the cowl pressure orifices were

located aft of the constant-area throat exit.) As
with the 30 ° data, the sidewall pressure distribu-

tion at y/H -- 0.13 is lower than the centerline; this
trend is in agreement with the aforementioned shock-

expansion model. The sidewall centerline array of
pressure orifices is sparse leading up to the throat,

so the reflected shock patterns are not resolved. Al-
though the pressure at the shoulder of the throat was

measured, the peak pressure on the inlet sidewalls

cannot be determined; it is possible that the peak
has occurred between orifices. The sidewall center-

line pressure distribution for CR = 3 shows the previ-

ously noted compression-expansion-compression pat-
tern, despite the fact that the modified oblique shock
theory for A = 70 ° predicts internal shock detach-

ment upstream of the throat for each of the contrac-
tion ratios tested. Even thc inviscid flow structure

downstream of the shock detachment is complex and

does lend itself to simple analysis. In this situation,
a full three-dimensional Navier-Stokes CFD solution

is desirable to more fully define the flow field.

The schlieren photographs show and the modified

oblique shock theory predicts higher spillage for the

70 ° configuration than for the 30 ° configuration.
The sparseness of the pressure orifices upstream of

the predicted shock detachment precludes comment

on whether the 70 ° model yields a pressure relief

near the cowl as a result of flow spillage such as

was noted with the 30 ° configuration. (However,
fig. 15(a) shows a higher pressure upstream of the

throat at y/H -- 0.87 rather than at the sidewall

centerline.) Particularly at the higher contraction
ratios (figs. 15(5) and (c)), the data at the sidewall

centerline and at y/H = 0.87 show a strong pressure
relaxation in the throat without the appearance of
pressure rises associated with reflected shocks.

Figures 16(a)-(d) present the effects of the cowl

position on pressures measured on the baseplate, the

sidewall centerline, and the sidewall at y/H = 0.87
and 0.13 for the 70 ° model at a contraction ra-

tio of 3 and NRe ---- 5.50 × 105 per foot. (This
is the same model configuration that was used for

the presentation of cowl position effects for the 30 °
model.) These plots are typical of the data taken

at each contraction ratio, and they reveal that the

baseplate, the sidewall at y/H = 0.13, and the
sidewall centerline are out of the domain of influ-

ence of the cowl. With no cowl and 0-percent

cowl (aft cowl position), the sidewall pressures at

y/H ---- 0.87 are not influenced by the cowl posi-
tion; the pressures increase toward the throat and

then expand around the shoulder. However, for the
25-percent cowl configuration, the pressure relief at

y/H = 0.87 observed in the throat as a result of

the expansion is reduced; this reduction may possi-

bly be caused by the crossing of the cowl shock just

upstream of these orifices. Although no cowl data

are presented for the 0-percent position (because the
orifices are located aft of the constant-area throat

exit), figure 16(e) presents the cowl pressure distri-

bution for the 25-percent cowl configuration. Pres-

sures on the cowl are high, and although the inter-
nal reflecting shock model is no longer valid from an



inviscidperspective,thepressureson the cowlcon-
tinue to risetowardthe throat. Evenif the shock
sheetshavebecomedetached,spillageis expected
becauseof the largepressuredifferencebetweenthe
free-streamandthe internalflows.Whenthe cowl
ismovedforwardto blocksomeofthis spillage,high
cowlpressuresresultfromthe impingementof this
flowonthecowl.

Contraction-ratioeffectsareexaminedonthe70°
modelata0-percentcowlandafree-streamReynolds
numberof 5.50× 105per foot; theseresultswere
typical of the data at eachcowl position. (The
contraction-ratioeffectsfor the 70° modelarepre-
sentedat thesamecowlpositionandReynoldsnum-
beraspreviouslypresentedfor the30° model.)Fig-
ures17(a)-(d)demonstratethe sidewalleffectsof
contractionratioon thestaticpressuresonthebase-
platecenterline,thesidewallcenterline,andtheside-
wall at y/H -- 0.87 and y/H = 0.13, respectively.
Figure 17(a) reveals that the effect of increasing con-

traction ratio yields an overall upward shift in the

pressure distribution. As with the 30 ° data, the base-

plate boundary layer and its associated weak leading-

edge shock isolate the centerline of the baseplate from
the sharp pressure peaks where the sidewall shocks
intersect at the centerline. Figure 17(b) presents the

sidewall centerline pressure distribution. The 30 °
data indicated that as the contraction ratio was in-

creased, the incident shock location moved forward;
there was also an increase in compression. The loca-

tion of the instrumentation on the 70 ° model did not

provide sufficient resolution to indicate any shift in
impingement location. Because the modified oblique

shock theory predicted sidewall shock impingements

in the region of x_/T_ = 0.47 to 0.63 (followed by
shock detachment), and because only one orifice was

located in that region, the pressure rise caused by

the impingement and the location of the impinge-
ment are not resolved. For each of the contraction ra-

tios, the highest measured pressure was immediately
ahead of the shoulder at the beginning of the throat

(x_/T_ = 0.994) on the sidewall centerline. The con-
figuration with CR = 3 is the only configuration for
which the pressure decreases and then rises again as if

there were an expansion followed by a shock impinge-

ment. At the higher contraction ratios, these inter-
actions are closer together, because the closer side-
walls decrease the distance between shock reflections.

Because the modified oblique shock theory predicted

detached shocks upstream of the throat, it is unlikely

that this reflecting shock model describes the flow
field. For the contraction ratios of 5 and 9, the pres-

sure relaxes monotonically downstream of the shoul-

der. This pressure relaxation was also evident in the

sidewall data at y/H = 0.87 (fig. 17(c)). The sidewall

at y/H = 0.13 (fig. 17(d)) indicates that the axial

pressure increase upstream of the throat intensifies
with increasing contraction ratio, which could be a
result of the more forward placement of the glancing

shocks with increased contraction ratio.

Leading-edge sweep effects. Figures 18(a)

and (b) show the effect of leading-edge sweep on the

baseplate and sidewall centerline pressure distribu-

tion, respectively, for the CR = 3, 0-percent cowl

configuration at NRe = 5.50 x 105 per foot. Modi-

fied oblique shock theory predicts that the compres-
sion across the leading-edge shock will increase by

approximately 4 percent when A is increased from
30 ° to 70 ° . After the flow passes through two shocks,

this margin increases to 13 percent. These data indi-
cate, however, that the compression for the A = 70 °

configuration is significantly less than for the 30 ° con-
figuration. The importance of flow spillage on inter-

nal pressure relief is illustrated by the fact that the

spillage yields a pressure relief sufficient to overcome
the increase that was predicted inviscidly (neglecting

end effects) on both the sidewall and the baseplate.

Reynolds number variation. Reynolds num-
ber effects were studied for CR = 3, 0-percent cowl

configuration with A -- 30 ° (figs. 19(a) and (b))

and h = 70 ° (figs. 20(a) and (b)). Decreasing

the Reynolds number causes the viscous forces to
take on greater significance with respect to the mo-

mentum forces. Hence, boundary-layer thickness is

expected to increase; of more importance to the invis-
cid flow field is the fact that the displacement thick-
ness increases and causes all surfaces to possess ef-

fectively larger wedge angles. This in turn generates
stronger shocks and increases the internal compres-
sion of the inlet. Figures 19(a) and (b) present base-

plate and sidewall centerline pressure distributions

for a configuration with a 30 ° leading-edge sweep, a

0-percent cowl, and a contraction ratio of 3 at free-
stream Reynolds numbers of 0.89 × 105, 2.89 × 105,

and 5.50 x 105 per foot. Although the Reynolds

number range obtained in the present work spans
less than an order of magnitude, the Reynolds num-

ber effect is significant; a 27-percent increment in

peak pressure is observed on the baseplate center-
line. Figure 19(b) shows some forward movement of
the sidewall shock impingement points (due to in-

creasing shock angles), but the instrumentation den-

sity is insufficient to quantify the extent of the shock
movement.

Figures 20(a) and (b) show the pressure distri-
butions on the baseplate and sidewall centerlines,
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respectively,for the 70° leading-edgesweepconfig-
urationover the same range of Reynolds numbers.
Trends similar to the 30 ° data are noted, but the

magnitude of the increment in peak baseplate center-

line pressure distribution is decreased to approxi-

mately 17 percent, compared with 27 percent for

A = 30 ° (i.e., the Reynolds number effects appear to

attenuate with (or be dominated by) increasing A).
The measured decrease in pressure with increased

A suggests weaker shocks, which do not interact as

strongly with the baseplate boundary layer.

Concluding Remarks

Three-dimensional sidewall-compression scram jet
inlets with leading-edge sweeps of 30 ° and 70 ° have

been tested in tile Langley Hypersonic CF 4 Tunnel at

Mach 6 and a ratio of specific heats of 1.2 to examine

the effects of leading-edge sweep, cowl position, con-
traction ratio, and Reynolds number on the internal

flow interactions. Tile present work also represents
the first step toward obtaining a characterization of

simulated real-gas effects on inlet flow fields. Admit-

tedly, simulation of the effects of low ratios of specific

heat 7 in tetrafluoromethane (CF4) is approximate

because of the variation of 2" within the shock layer
along or around a reentering vehicle, in contrast to

the nearly constant 3' within the shock layer in CF4.
However, the facility provides a lower bound for tile

assessment of "_ effects that cannot be obtained in

other ground test facilities. To obtain the explicit ef-

fects of low 7, the model must be tested in both CF4
and air, and the present work has fulfilled the first
phase of that work.

Of particular interest for the combined project are

tile inlet starting characteristics. It was not known

prior to testing whether the model could start in a

low-7 environment. More important to the wind tun-
nel experiment is that, because these models were the

largest tested to date in the CF4 facility, it was not

known whether the tunnel would unstart (because of
blockage effects) once tile model was injected into the

flow. Based on schlieren movies taken of each run,

both the tunnel and the inlet appeared to start and

remain started for each configuration tested. The

schlieren movies indicated that the flov" was steady
on an 8-msec time scale and showed the effect of the

internal flow on the external flow in terms of spillage.

To obtain an approximate characterization of the
flow field, a modification of two-dimensional invis-

cid oblique shock theory was derived to accommo-

date the three-dimensional effects of leading-edge
sweep. This theory qualitatively predicted the re-

flected shock structure (i.e., sidewall impingement

locations) and the observed increase in spillage with
increasing leading-edge sweep.

Two generalizations can be made when compar-

ing the 30 ° and 70 ° data. First, for a given con-
traction ratio and cowl position, the 70 ° sweep inlet

provides generally lower compression than the 30 °

leading-edge sweep inlet. Second, the 70 ° model pro-
vides more spillage. The former is in fact a direct

result of the latter. The modified oblique shock the-

ory and the sehlieren photographs indicate that in-

creasing the sweep angle enhances the spillage. Thus,

the 30 ° sweep inlet configuration would be expected
to capture more of the high-pressure fluid and have

a higher effective compression than the 70 ° config-
uration. Further, the shock sheets emanating from
the 70 ° sidewalls arc more inclined, and hence more

susceptible, to shock detachment.

The primary effect of moving the cowl forward is

capturing the flow that would have otherwise spilled
ahead of the cowl. Large pressures on the cowl result

from the shock formed on tile cowl leading cdgc when

the flow that was deflected by the swept, sidewall

leading edges impacts the free-stream aligned cowl.
When the cowl is in the aft position, this deflected

flow simply spills out ahead of thc cowl. Sidewall
and bascplate pressures indicate that the effect of

the cowl position on internal pressures is limited to

the immediate vicinity of the cowl.

For both tile 30 ° and 70 ° leading-edge sweep an-

gles, increased contraction ratio increases the pres-
sure distribution throughout the inlet. With the side-

walls closer together, the leading-edge shock sheet
encounters the centerline farther forward and hence

reflects more timcs prior to reaching the throat. Each

of these reflected oblique shocks incrementally in-

creases the pressure. Although the Reynolds number
range obtained in the present work spanned less than

an order of magnitude, an overall increase in inlet
compression (the magnitude of which decreased with

increasing leading-edge sweep angle) was noted with
decreasing Reynolds number. The instrumentation

density was insufficient to resolve' the accompanying
forward shift in sidewall shock impingement location.

The modified oblique shock theory provides general
information on the salient features of the shock struc-

ture. In particular, the location of the first incident

shock is adequately identified and tile trends associ-

ated with flow spillage are given.

The present work hat therefore provided an in-
viscid model of the internal shock structure of three-

dimensional inlets, has added to a sparse data base

of inlet tests in complex gases (first known inlet
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test in CF4),andhasmadea first steptowardthe
explicitattainmentof low-'yeffects.To morefully
documenttheflowfield,particularlythe 70° config-
uration,wherea eenterlineMachnumberreflection
is likely,a moreheavilyinstrumentedmodelin con-

junctionwith a full three-dimensionalNavier-Stokes
computationalfluid dynamicssolutionis required.
NASALangley Research Center
Hampton, VA 23681-0001
September 23, 1993
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Appendix

Onlyslightmodificationsto inviscidtwo-dimensional(2-D)obliqueshocktheoryarerequiredto allowfor
the inclusionof leading-edgesweep.Theequationsarepresentedherefor a perfectgas.Theextensionto a
viralgassuchasCF4 requires an iterative calculation of the shock angles and properties with the appropriate

gas model.

Figure 21 shows the oncoming free-stream Mach vector broken into components parallel and normal to the

swept leading edge. Two-dimensional oblique shock theory may be applied directly to the normal component

Mln to determine its postshock components; the effective sidewall-compression angle, the wedge angle measured

normal to the leading edge, is given by

(tan 5_
5eft = tan -1 \_] (1)

and is greater than 5. The perfect gas equations to find the resultant Mach vector behind the oblique shock

for the 2-D theory may be found in several references (e.g., ref. 27) where three equations can be combined to

give (in the notation of this study) M2n in terms of Mln, the ratio of specific heats, and the effective wedge

and shock angles as

M2nsin20eft+[
/

sin(Serf - 5eft)

1/2

(2)

The parallel (or crossflow) component M1p must be treated separately. Although the component of velocity
parallel to the shock remains unchanged through the shock, the Mach number associated with that velocity
vector decreases as a result of the increase in static temperature and hence the speed of sound across the shock,

as

(T1) 1/2 (T1) 1/2M2p = Mlp T22 = M1 sin A T22 (3)

When the components behind the shock are known, the resultant magnitude and direction of the Mach vector

can bc determined. The spillage angle _ is defined as the difference between two angles, F and g, in the plane

of the wedge, as shown in figure 21. The angle the leading edge makes with the x-z plane measured in thc

plane of the wedge is given by

( sin5 "_
r = sin -1 \s-_n _eff] (4)

The angle that the resultant nmkes with the leading edge in the plane of the wedge is given by

( M2n _ M2n
fl = tan-1 \Al2p] = tan-1 (T1/T2)I/2 M1 sin A

(5)

The spillage angle is the difference between these two angles as follows:

¢=P-g

= sm s_-n-_eff] - tan-1 (T1/T2) 1/2 M1 sin A
(6)

An alternate but equivalent definition of the spillage angle is the difference between the angle made by the

resultant M2 and its component normal to the leading edge M2n and the angle between the x-y plane and

M2n; both angles are measured in the plane of the wedge (see fig. 4). This alternate equation may be more

convenient for some applications and is hence provided for reference as follows:

( M2p _ _ tan- 1(cos 5eft tan A)
= tan-1 \M2n]

(7)

12



Forall thecasesconsideredin thepresentwork,thespillageis on theorderof a coupleof degrees.Oncethe
conditionsbehindthe first shockarecomputed,theprocessis repeatedfor eachshockupstreamof thecowl
leadingedge.Performancequantities(e.g.,total pressurerecovery,rlke, etc.) and the mass capture (based on

total spillage) can then be computed.
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Table 1. Test Matrix for A -- 30 ° Model

Contraction

ratio (CR)

Reynolds number per foot at each cowl position--

0 percent 25 percent No cowl

3 0.89 x 105 5.50 x 105 5.50 x 105

2.85

5.50

5 5.50 x 105 5.50 x 105 5.50 × 105

9 5.50 x 105 5.50 x 105 5.50 x 105

Table 2. Test Matrix for A = 70 ° Model

Reynolds number per foot at each cowl position--

Contraction

ratio (CR) 0 percent 25 percent No cowl

3 0.89 x 105 5.50 x 105 5.50 x 105

2.85

5.50

5 5.50 x 105 5.50 × 105 5.50 x 105

9 5.50 x 105 0.89 x 105 5.50 x 105

2.85
5.50
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Table3. Free-StreamandPostnormal-ShockFlowConditionsfor NRe ----0.89 × 105 Per Foot

[CF4 Tunnel; run 2289; Time = 7 sec]

Reservoir stagnation conditions:

PtJ, N/m 2 (psia) ........................... 0.1853E+07 (0.2687E+03)

Ttj, K (°R) ............................. 0.6317E+03 (0.1137E+04)

Pt,1, kg/m 3 (lbm/ft 3) ......................... 0.3083E+02 (0.1924E+01)

Ztj ....................................... 0.1007E+01

ht,1, J/kg (Btu/lbm) ......................... 0.6298E+06 (0.2709E+03)

Free-strcam conditions (flow not saturated):

Pl, N/m 2 (psia) ............................ 0.5165E+02 (0.7491E-02)

TI, K (°R) .............................. 0.1623E+03 (0.2921E+03)

Pl, kg/m3 (lbm/ft 3) .......................... 0.3369E-02 (0.2103E-03)

qi, N/E 2 (psia) ............................ 0.1245E+04 (0.1805E+00)

hi, J/kg (Btu/lbm) .......................... 0.2603E+06 (0.1120E+03)

ul, m/sec (ft/scc) ........................... 0.8596E+03 (0.2820E+04)

N/Ce,1, m -1 (ft -1) ........................... 0.2912E+06 (0.8877E+05)

#1, N-sec/m 2 (lbm/ft-sec) ....................... 0.9945E-05 (0.6683E-05)
M1 ....................................... 0.6237E+01

Z1 ....................................... 0.1000E+01

71 ........................................ 0.1239E+01

Npr,1 ...................................... 0.8511E+00

Static conditions behind normal shock:

P2, N/m 2 (psia) ............................ 0.2328E+04 (0.3376E+00)

T2, K (°R) ............................... 0.6275+03 (0.1129E+04)

P2, kg/nl 3 (lbm/ft 3) .......................... 0.3926E-01 (0.2451E-02)

u2, m/see (ft/sec) ........................... 0.7376E+02 (0.2420E+03)

h2, J/kg (Btu/lbm) .......................... 0.6270E+06 (0.2697E+03)

NRe,2, m -_ (ft -1) ............................ 0.9370+05 (0.2856E+05)

Z2 ....................................... 0.1000E+01

/142 ....................................... 0.2881E+00

72 ........................................ 0.1106E+01

Npr,2 ...................................... 0.7574E+00

Stagnation conditions behind normal shock:

Pt2, N/m2 (psia) ........................... 0.2437E+04 (0.3534E+00)

Tt,2, K (°R) ............................. 0.6302E+03 (0.1134E+04)

Pt,2, kg/m 3 (lbm/ft 3) ......................... 0.4092E-01 (0.2555E-02)

Zt,2 ....................................... 0.1000E+01

ht,2, J/kg (Btu/lbm) ......................... 0.6297E+06 (0.2709E+03)

7t,2 ....................................... 0.1106E+01
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Table4. Free-StreamandPostnormal-ShockFlowConditionsfor NRe --- 2.85 x 105 Per Foot

[CF4 Tunnel; run 2290; Time = 7 sec]

Reservoir stagnation conditions:

Pt,1, N/m2 (psia) ........................... 0.6607E+07

Tt,1, K (°R) ............................. 0.6511E+03

Pt,1, kg/m3 (lbm/ft3) ......................... 0.1042E+03

Z_l .......................................

ht,1, J/kg (Btu/lbm) ......................... 0.6462E+06

Free-stream conditions (flow not saturated):

Pl, N/m2 (psia) ............................ 0.1761E+03

T1, K (°R) .............................. 0.1688E+03

Pl, kg/m3 (lbm/ft3) .......................... 0.1105E-01

ql, N/m2 (psia) ............................ 0.4228E+04

hi, J/kg (Btu/lbm) .......................... 0.2636E+06

ttl, m/see (if/see) ........................... 0.8749E+03

NR_,I, m -1 (ft -1) ........................... 0.9348E+06

#1, N-sec/m2 (lbm/ft-sec) ....................... 0.1034E-04

_1 .......................................

Zl .......................................

"71 .................................... " " " "

Npr, 1 ....................................

Static conditions behind normal shock:

P2, N/m2 (psia) ............................ 0.7914E+04
T2, K (°a) .............................. 0.6441E+03

P2, kg/m3 (lbm/ft3) .......................... 0.1300E+00

u2, m/sec (ft/sec) ........................... 0.7432E+02
h2, J/kg (Btu/lbm) .......................... 0.6435E+06

NRe,2, m-1 (ft-1) ........................... 0.3070E+06

Z2 .......................................

M2 .......................................

_2 ........................................

Npr,2 ......................................

Stagnation conditions behind normal shock:

Pt,2, N/m2 (psia) ........................... 0.8280E+04

Tt,2, K (°R) ............................. 0.6469E+03

Pt,2, kg/m3 (lbm/ft3) ......................... 0.1355E+00

Z_2 ........................... " ...........

hi,2, J/kg (Btu/lbm) ......................... 0.6462E+06

"/t,2 .......................................

(0.9583E+03)

(0.1172E+04)
(0.6504E+01)

0.1031E+01

(0.2780E+03)

(0.2555E-01)
(0.3038E+03)

(0.6897E-03)

(0.6132E+00)

(0.1134E+03)

(0.2870E+04)

(0.2849E+06)

(0.6948E-05)
0.6240E+01
0.1000E+ 01

0.1233E+01

0.8330E+00

(0.1148E+01)

(0.1159E+04)

(0.8119E-02)

(0.2438E+03)
(0.2768E+03)

(0.9357E+05)
0.1000E+01

0.2866E+00

0.1105E+01

0.7541E+00

(0.1201E+01)

(0.1164E+04)

(0.8458E-02)
0.1000E+ 01

(0.2780E+03)
0.1105E+01

17



Table5. Free-StreamandPostnormal-ShockFlowConditionsfor NRe ----5.50 × 105 Per Foot

[CF4 Tunnel; run 2284; Time = 7 sec]

Reservoir stagnation conditions:

Ptj, N/m 2 (psia) ........................... 0.1380E+08 (0.2002E+04)

Tt,1, K (°R) ............................. 0.6711E+03 (0.1208E+04)

Pt,1, kg/m 3 (lbm/ft 3) ......................... 0.2023E+03 (0.1263E+02)

Zt,1 ....................................... 0.1076E+01

ht,1, J/kg (Btu/lbm) ......................... 0.6634E+06 (0.2854E+03)

Free-stream conditions (flow not saturated):

Pl, N/m 2 (psia) ............................ 0.3630E+03 (0.5265E-01)

7"1, g (°R) .............................. 0.1760E+03 (0.3168E+03)

Pl, kg/m 3 (lbm/ft 3) .......................... 0.2184E-01 (0.1363E-02)

ql, N/m 2 (psia) ............................ 0.8652E+04 (0.1255E+01)

hl, J/kg (Btu/lbm) .......................... 0.2672E+06 (0.1150E+03)

Ul, m/sec (ft/sec) ........................... 0.8902E+03 (0.2921E+04)

NRe,1, m-1 (ft-1) ........................... 0.1804E+07 (0.5499E+06)

Pl, N-sec/m 2 (lbm/ft-sec) ....................... 0.1077E-04 (0.7240E-05)
M1 ....................................... 0.6233E+01
Z_ ....................................... 0.9999E+00

"_1 ........................................ 0.1227E+01
Npr,1 ...................................... 0.8170E+00

Static conditions behind normal shock:

P2, N/m 2 (psia) ............................ 0.1621E+05 (0.2351E+01)

T2, K (°R) .............................. 0.6613E+03 (0.1190E+04)
P2, kg/m 3 (lbm/ft 3) .......................... 0.2595E+00 (0.1620E-01)
u2, m/sec (ft/sec) ........................... 0.7492E+02 (0.2458E+03)

h2, J/kg (Btu/lbm) .......................... 0.6606E+06 (0.2842E+03)

NRe,2, m-1 (ft-1) ........................... 0.6062E+06 (0.1848E+06)

Z2 ....................................... 0.1000E+01

M2 ....................................... 0.2852E+00

72 ........................................ 0.1104E+01
Npr,2 ...................................... 0.7507E+00

Stagnation conditions behind normal shock:

Pt,2, N/m 2 (psia) ........................... 0.1695E+05 (0.2459E+01)

Tt,2, K (°R) ............................. 0.6641E+03 (0.1195E+04)

Pt,2, kg/m 3 (lbm/ft 3) ......................... 0.2702E+00 (0.1687E-01)

Zt,2 ....................................... 0.1000E+01

ht,2, J/kg (Btu/lbm) ......................... 0.6634E+06 (0.2854E+03)

"_t,2 ....................................... 0.1104E+01
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Table6.Listingof 25mnelRuns

Run

2262

2263

2264
2265

2266

2267

2268
a2270

2271

2272

2273
2274

2275
2276

2277

2278

2279
2280

2281

a2282

2284
2285

2286

2287

2288
2289

2290

X

X

X

X

X

X

X

X

X

X

X

X

X

CR

X

X

X

X

X

X

9

X

X

X

X

X

X

X

X

O%

X

Cowl position

25% No

A = 30 ° model

X

X

X

X

X

X

X

A = 70 ° model

X

X

X

X

X

X

aSchlieren photograph included in this report.

Reynolds number per foot

5.50 x 105 2.85 x 105 0.89 x 105

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 7. Shock hnpingement Locations Based on Inviscid Prediction for CF4

Centerlinc Sidewall Centerline Sidewall

CR xt/Ttz [ x, in. x'/TIx x, in. x'/Ttx x, in. xt/T_ I x, in.

Centerline Sidewall

x'(T; .... x,in__ xl/_T_____ x, in.

A = 30 °

3 0.67 3.36 0.91 4.59 1.14 5.75 [

l5 .55 2.79 .76 3.83 .95 4.79 1.03 5.19

9 .50 2.52 .68 3.43 .86 4.34 .93 4.64 0.997 5.03

A = 70 °

3 0.49 2.47 0.63 3.18 Detached

5 .41 2.07 .53 2.67 Detached

9 .37 1.87 .47 2.37 Detached

1.03 5.19
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modules_

Forebody

Shock_Engine

modules
SectionA-A

Figure1.Propulsionairframeintegration.

/_ Vehicle
T _ / \__ / forebody plane

.HI. _,_ ____//" (baseplate)
2.75 in. -"_\ _ \ _ '_

(6°)

Cowl

Figure 2. Modular engine construction for airframe integrated scramjet inlet (inlet shown in flight orientation).
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OR!GINAIL PAGE

_LACK AND WHITE PHOTOGRAPH

(a) 30 ° inlet model.

L-92-1782

(b) 70 ° inlet model.

Figure 3. Generic scramjet inlet models.

L-92:i781
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'4_X
Cowl leading edge (cowl removed)

lz g

•

.015 diam -_

5.66
Section A-A

(a) 30 ° model.

A

,F

---I_ X
Cowl leading edge (cowl removed)j

B B

Tk=
I_ 5 04 _ z--Cowl

y 70 °

"015 diam. _///Static °rifices [._

I_ x = Baseplate
5.66 Section B-B

(b) 70 ° model.

Figure 4. Sketches of inlet models with 30 ° and 70 ° leading-edge sweep. Linear dimensions are given in inches.
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V- Domeloader
\ valve r- Settling V-'Test V" Diffuser

Storage \ Lead-bath \chamber \ section \ After cooler

llelO i _ heaters \ I\ \ I--_ _"

[ i F __[[[_[[_ Vac4 I ._

f'[L _lter I 1
L ) Compressor H20 H20

I_ CF 4 trailer

I va_

I
CF 4 reclaimer

Figure 5. Schematic of Langley Hypersonic CF4 Tunnel.

O
",,_,

o

(a) Shock aft of shoulder.

(b) Shock on shoulder.

(c) Shock upstream of shoulder.

Figure 6. Inviscid shock interactions between wedges when end effects are neglected.
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CR=5

MI =6

CR=3

CR=9

I I I I I
x'/T_ = 0.0 x'/T_ = 0.25 x'/T_ = 0.50 x'/T:_ = 0.75 x'/T_ = !.0

Figure 7. Scale drawing of inviscid shock location predictions for A = 30 ° configuration for contraction ratios
of 3, 5, and 9.

Deflected flow spilling
from

Sidewall (internal)
leading-edge
shock C

Figure 8, Region of flow deflected by internal leading-edge shock. (Additional spillage from reflected shocks
not shown; spillage angle _ exaggerated.)
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Spillageareaforhigh
inflowMachnumber

Inlet
sidewall

Spillage area for low
inflow Mach number

Figure 9. Effect of increased inflow Mach number on size of spillage window (region of flow deflection) in cowl

plane.

Figure 10. Centered expansion model of baseplate interaction region.
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t_ILACK AND WHITE PHOTOGR_P_

(a) Run 2270; A = 30°.

(b) Run 2282; A = 70%

Figure 11. Sehlieren photographs of external inlet flow field. CR = 5; 0-percent cowl; NRe = 5.50 x 105 per
foot.
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(a) Run 2262; CR = 3.

2O
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P/Pl 10
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0 Baseplate centerline

[] Sidewall centerline

LX y/H = 0.87

[] y/H = 0.13

[] Cowl centerline

I I I I I | I I I I • I • I I l I I I I I

0 .5 1.0 1.5 2.0 2.5

x'/T_

(b) Run 2270; CR = 5.

Figure 12. Configuration complete plots for A = 30 °, 0-percent cowl, and NRe = 5.5 x 105 per foot.
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P/Pl 15
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O Baseplate centerline
[] Sidewall centerline

zx y/H =0.87

[] y/H =0.13
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| 1 i i | 1 i | i | i i i IILILI I I | | | |

.5 l.O 1.5 2.0 2.5

x'/T_

(c) Run 2272; CR = 9.

Figure 12. Concluded.
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P/Pl

5 O Run 2262, 0-percent cowl

[] Run 2267, 25-percent cowl
n 2264, no cowl

I I ' ' | i i • i l i i I I I , , , , I , , . , ]

•5 1.0 1,5 2.0 2.5

x'/'r_

(a) Baseplate centerline.

P/P 1

2

I

O Run 2262, 0-percent cowl

[] Run 2267, 25-percent cowl

A Run 2264, no cowl/

.65 .70 .75 .80 .85 .90 .95 1.00

x'/'rk

(b) Sidewall at y/H = 0.13.

Figure 13. Cowl effects on pressure distribution. A = 30"; CR = 3; NRe = 5.50 x 105 per foot.
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0

O Run 2262, 0-percent cowl

[] Run 2267, 25-percent cowl

Zx Run 2264, no cowl

¢ i 1 s I , , , i I i I , , . i I • i I

.5 1.0 1.5 2.0 2.5

x'fl'_

(c) Sidewall centerline.

P/Pl

O Run 2262, 0-percent cowl

[] Run 2267, 25-percent cowl

zx Run 2264, no cowl

.75 .80 .85 .90 .95 1.00 1.05

x'/T_

(d) Sidewall at y/H = 0.87.

Figure 13. Continued.
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O Run 2262,0-percent cowl
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. I . i I . i . ! J I I I l 1 . | 1 z | e ' • ' I
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(e) Cowl centerline.

Figure 13. Concluded.
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j L,,l, 1,1111 j

0 .5 1.0 1.5 2.0

x'/T_

(a) Baseplate centerline.
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P/Pl
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• i , I

0 2.5

O Run 2262, CR = 3

[] Run 2270, CR = 5

zx Run 2272, CR = 9

.5 1.0 1.5 2.0

xTrl

(b) Sidewall centerline.

Figure 14. Contraction ratio effects on pressure distribution. A = 30°; 0-percent cowl; NRe = 5.50 × 105 per
foot.
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(c) Sidewall at v/H = 0.13.
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O Run 2262, CR = 3

[] Run 2270, CR = 5

zx Run 2272, CR = 9
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.80 .85 .90 .95 1.00 1.05

x'/T_

(d) Sidewall at v/H = 0.87.

Figure 14. Continued.
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(e) Cowl centcrline.

Figure 14. Concluded.
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/_ 0 Baseplate centerline

[] Sidewall cen'erline

•", y/H = 0.87
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x'/T;_

(a) Run 2281; CR = 3.

P/P1

lO
O Baseplate centerline

[] Sidewall centerline

0 .5 1.0 1.5 2.0 2.5
x'/Tk

(b) Run 2282; CR = 5.

Figure 15. Configuration complete plots for A = 70 °, 0-percent cowl, and NRe = 5.50 × 105 per foot.

35



20

18

16

14

12

P/Pl 10

8

6

4

2

0

O Baseplate centerline

[] Sidewall centerline

,x y/H = 0.87

[] y/H = 0.13

I I t • | i I I I I ¢ ' ' i I t . l ' I . . , , J

.5 1.0 1.5 2.0 2.5

x',rrk

(c) Run 2287; CR = 9.

Figure 15. Concluded.
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5 O Run 2281, 0-percent cowl

[] Run 2280, 25-percent cowl

zx Run 2279, no cowl

4

3

P/Pl

2

!

0 .5 1.0 1.5 2.0 2.5

x'ffk

(a) Baseplate centerline.

P/Pl

4

O Run 2281, 0-percent cowl

[] Run 2280, 25-percent cowl

A Run 2279, no cowl

0 i i t t m t i i i i i I i | i * i | i I , , t . • . • . , 1

.5 1.0 1.5 2.0

x'/T_

(b) Sidewall centerline.

Figure 16. Cowl effects on pressure distribution. A = 70°; CR = 3; NRe = 5.50 × 105 per foot.
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10 o Run 2281,0-percent cowl

[] Run 2280, 25-percent cowl

/, Run 2279, no cowl

P/Pl

•7 .8 .9 1.0 1.1 1.2 1.3
x'/'r;_

(c) Sidewall at y/H = 0.87.

P/P I

5 O Run 2281,0-percent cowl

[] Run 2280, 25-percent cowl

zx Run 2279, nocowl

'"; .... ; .... ; .... ; .... 9;.... ; .... '.6. 7 7 8 8 9 1.00

x',,r_

(d) Sidewall at y/H = 0.13.

Figure 16. Continued.
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(e) Cowl centerline.

Figure 16. Concluded.
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10 O Run 2281,CR = 3

O Run 2282, CR = 5

A Run 2287, CR =9
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x'/T_

(a) Baseplate centerline.
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(b) Sidewall centerline.

Figure 17. Contraction ratio effects on pressurc distribution. A = 70°; 0-percent cowl; NRe = 5.50 × 105 per
foot.
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(d) Sidewall at y/H = 0.13.

Figure 17. Concluded.
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(b) Sidewall centerline.

Figure 18. Leading-edge sweep effects on pressure distribution. CR = 3; NRe = 5.50 × 105 per foot; 0-percent

cowl.
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(b) Sidewall centerline.

Figure 19. Reynolds number effects on pressure distribution for A = 30 °, CR = 3, and 0-percent cowl.
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(b) Sidewall centerline.

Figure 20. Reynolds number effects on pressure distribution for A = 70 °, CR = 3, and 0-percent cowl.
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Figure 21. Mach number components for modified two-dimensional oblique shock theory.
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